How much walking do Sydneysiders do in their daily life? Evidence from the Household Travel Survey

1st International Conference on Transport and Health

Dr Chinh Ho and Professor Corinne Mulley
Institute of Transport and Logistics Studies
University of Sydney Business School
Sydney, Australia
Outline

1. Motivations and Research Objectives
2. Data and Methodology
3. Descriptive and Modelling Results
4. Conclusions
Motivations and Research Objectives

- How far do people walk to public transport?
- How far do Sydneysiders walk?
 - To public transport
 - To other activities
 - In total
- What would be the improvement in meeting physical activity targets if short trips were converted to walking?
 - Which short trips and by whom
- What are the determinants of these walking trips?
 - To provide appropriate public health advice
Data and Analysing Methods

- Sydney Household Travel Survey (2007/08 – 2009/10)
 - 24-h travel diary for all household members
 - Supplemented with road network data (i.e., skim matrices) and GIS layers
- Trip-based and tour-based analysis
 - How much do Sydneysiders walk in terms of trip and time?
 - How much more people would be achieving the recommended physical activity if they walk instead of using motorised modes for walkable trip segments?
- Modelling analysis
 - What are the factors that influence the incidence of walking?
 - What are the main drivers of walking time?
Walk trips per person per day by residential location
Average Walking per person per day: Trips vs. Time
How much do Sydneysiders walk?

Cumulative distribution of walk time per person per day, Sydney SD

- Walk to/from PT
- Walk to activity
- Total walk time

Walk time per person per day (minute)
Why Sydneysiders walk very little?

- Car driver
- Car passenger
- Walk
- Public transport
- Others

Tour-based modal share

Average walking distance to access activity (km)

Why Sydneysiders walk very little?
Can we increase walking by converting trips?

- What does it mean to have a convertible trip segment?:

- Main mode is PT
 - Motorised trip segment that are within a walkable distance of 800 meters
 - Not a connecting trip segment (PT to PT)

- Main mode is Car
 - Motorised trip segment ≤ 800m
 - If car driver, must has an anchor

![Cumulative distribution of average walk time per person per day in Sydney SD: current vs. increased effort](chart)

% convertible trip segments

- Car driver
- Car passenger
- Public transport

Increased effort

Current effort

Walk time per person per day (minute)
Modelling walking time

- **Double Hurdle Model:** 2-stage decision process (i.e., hurdle)
 - Whether or not a person walks on an observed day; and
 - If walk, how long they walks

- As a mathematical expression:
 - Binary probit model governing the walking decision ($d = 1$ or $d = 0$)
 \[
 d_i^* = \alpha' z_i + v_i, \; v_i \sim N[0,1]
 \]
 \[
 d_i = 1 \text{ if } d_i^* > 0
 \]
 - Regression model determining the walking time
 \[
 y_i^* = \beta' x_i + \varepsilon_i, \; \varepsilon_i \sim N[0,\sigma_i]
 \]
 \[
 \begin{cases}
 y_i = y_i^* \text{ if } d_i^* > 0 \text{ and } y_i^* > 0 \\
 y_i = 0 \text{ otherwise}
 \end{cases}
 \]
 - The model allows for non-normality and heteroscedasticity of the error terms
Modelling Results

<table>
<thead>
<tr>
<th></th>
<th>Walk or not (d)</th>
<th>Walking time (y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. daily activities</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Distance from home to closest activity (km)</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>No-car household</td>
<td>+++</td>
<td>+++</td>
</tr>
<tr>
<td>Car-negotiating household</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Personal income</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Road link density at residential place (‘000s/km2)</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Pseudo node density at residential place (‘000s/km2)</td>
<td>+++</td>
<td></td>
</tr>
<tr>
<td>Weekend</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Licence holder</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Age under 5 years old</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Age 5 – 14</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Distance from home to closest high freq. PT stop</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Distance from home to furthest activity (km)</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>---</td>
<td>+++</td>
</tr>
</tbody>
</table>

Note: +++ Significantly positive at 1%; ++ at 5%
Modelling Results – Partial Effects

Average partial effects on probability of walking and expected walking time

- No-car household
- No. daily activities
- Male
- Car-negotiating household
- Age 65+
- Student
- Road link density
- Dist. home to closest act
- Age 50 - 64
- Age 30 - 49
- Personal income (‘000s)
- Dist. Work to PT
- Dist. home to furthest act
- Dist. home to hi freq PT
- Pseudo node density
- Weekend
- Age under 5
- Licence holder
- Age 5 - 14

Prob (y>0) ▲ Walking time

Pseudo notes –
- more node
 - more curvy
 - less friendly

Links
- More links
- More friendly
Modelling Results – Using the Partial Effects to target messages

Average partial effects on probability of walking and expected walking time

Target no car households
Target more activities on foot
Target women

Promote walkable environments
Conclusions

– If walking were the only physical activity in a typical day, a large proportion of Sydneysiders do not meet advisory physical activity targets
– Walking to access activities contributes more to total walking time than walking to/from motorised modes
– “Covering short distance trips on foot” may not be as good public health message as “doing more activities on foots”
– Walkable environments does appear to associate with longer walking time